Abstract

An α-l-arabinofuranosidase (Abf) encoding gene was obtained via genomic mining from a Ruminococcus albus strain. The specific activity of this GH 51 Abf was 73.3 U/mg at pH 6.0 and 50 °C. The modification of Abf, aimed at improving thermostability, was performed through different strategies. Structure-based rational design using the PoPMuSiC and the Enzyme Thermal Stability System (ETSS) predicted thermal stability of Abf and enhanced the half-life of thermal inactivation (t1/2) at 50 °C for K208W more than 11.1 times versus the wild-type (WT). Sequence-based rational design was also conducted by substituting histidine with lysine at various sites. Among eight mutants, the t1/2 at 50 °C of H337K was prolonged by 5.0-fold, and the specific activity of this mutant was increased to 121.8 U/mg. In addition, the mutant H337K was utilized with some enzymes to extract pectin from apple pomace. The enzymatically produced pectin got less moisture and ash, milder pH, and higher viscosity than its acid-extracted counterpart, indicating that Abf has an application prospect in pectin production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call