Abstract
BackgroundCharacterization of novel fusion genes in acute leukemia is important for gaining information about leukemia genesis. We describe the characterization of a new ETV6 fusion gene in acute myeloid leukemia (AML) FAB M0 as a result of an uncommon translocation involving chromosomes 12 and 15.MethodsThe ETV6 locus at 12p13 was shown to be translocated and to constitute the 5' end of the fusion product by ETV6 break apart fluorescence in situ hybridisation (FISH). To identify a fusion partner 3' rapid amplification of cDNA-ends with polymerase chain reaction (RACE PCR) was performed followed by cloning and sequencing.ResultsThe NTRK3 gene on chromosome 15 was found to constitute the 3' end of the fusion gene and the underlying ETV6-NTRK3 rearrangement was verified by reverse transcriptase PCR. No RNA of the reciprocal NTRK3-ETV6 fusion gene could be detected.ConclusionWe have characterized a novel ETV6-NTRK3 fusion transcript which has not been previously described in AML FAB M0 by FISH and RACE PCR. ETV6-NTRK3 rearrangements have been described in secretory breast carcinoma and congenital fibrosarcoma.
Highlights
Characterization of novel fusion genes in acute leukemia is important for gaining information about leukemia genesis
Fusions between ETV6 and phospho-tyrosinkinases (PTKs) are found in a variety of hematological diseases where the HLH domain is essential for the aberrant function of the fusion product, e.g. chronic myelomonocytic leukemia (CMML), acute myeloid leukemia (AML), acute lymphoid leukemia (ALL) or myelodysplastic syndrome (MDS) [1]
We describe a novel ETV6 fusion in an AML patient, which was confirmed by fluorescence in situ hybridisation (FISH) and Whole chromosome paints (WCPs) (Figure 1) and could not be detected by routine chromosome banding techniques because it is highly cryptic
Summary
Characterization of novel fusion genes in acute leukemia is important for gaining information about leukemia genesis. We describe the characterization of a new ETV6 fusion gene in acute myeloid leukemia (AML) FAB M0 as a result of an uncommon translocation involving chromosomes 12 and 15. Chromosomal translocations resulting in fusion genes with transforming activity are fundamental in leukemia genesis. The ETV6 gene (ETS variant gene 6) on the short arm of chromosome 12 encodes a transcriptional repressor of the ETS transcription factor family which is fundamental in adult hematopoiesis and plays a versatile role in hematological malignancies [1]. Fusions between ETV6 and phospho-tyrosinkinases (PTKs) are found in a variety of hematological diseases where the HLH domain is essential for the aberrant function of the fusion product, e.g. chronic myelomonocytic leukemia (CMML), AML, acute lymphoid leukemia (ALL) or myelodysplastic syndrome (MDS) [1]. In other cases ETV6 has been shown to contribute to the dysregulation of cellular functions by its ETS domain [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.