Abstract

The purpose of this study was to describe a new user‐friendly, low‐cost phantom that was developed to test the accuracy of rigid and deformable image registration (DIR) systems and to demonstrate the functional efficacy of the new phantom. The phantom was constructed out of acrylic and includes a variety of inserts that simulate different tissue shapes and properties. It can simulate deformations and location changes in patient anatomy by changing the rotations of both the phantom and the inserts. CT scans of this phantom were obtained and used to test the rigid and deformable registration accuracy of the Velocity software. Eight rotation and translation scenarios were used to test the rigid registration accuracy, and 11 deformation scenarios were used to test the DIR accuracy. The mean rotation accuracies in the X‐Y (axial) and X‐Z (coronal) planes were 0.50° and 0.13°, respectively. The mean translation accuracy was 1 mm in both the X and Y direction and was tested in soft tissue and bone. The DIR accuracies for soft tissue and bone were 0.93 (mean Dice similarity coefficient), 8.3 and 4.5 mm (mean Hausdouff distance), 0.95 and 0.79 mm (mean distance), and 1.13 and 1.12 (mean volume ratio) for soft tissue content (DTE oil) and bone, respectively. The new phantom has a simple design and can be constructed at a low cost. This phantom will allow DIR systems to be effectively and efficiently verified to ensure system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.