Abstract
A new human megakaryocytic cell line (Dami) has been established from the blood of a patient with megakaryoblastic leukemia. The Dami cells grow primarily in suspension with a doubling time of 24 to 30 hours. By light and electron microscopy, the Dami cells range in size from 12 to 120 micron in diameter and have lobulated nuclei characteristic of megakaryocytes. At least 89% of the cells react with monoclonal antibodies against platelet glycoproteins (GP) Ib and IIB/IIIa, and glycophorin. The cells do not react with antibodies against lymphoid, monocyte, granulocyte, or macrophage antigens. Thirteen percent of the cells become polyploid, spontaneously achieving greater than 4N DNA ploidy levels. In response to phorbol myristate acetate (PMA), the proportion of cells with ploidy levels greater than 4N increased threefold and could be separated into discrete ploidy groups. PMA also increased the expression of GPIb, the GPIIb/GPIIIa complex,l and von Willebrand factor. Cytogenetic analysis revealed a human male hyperdiploid karyotype with a modal chromosome number of 54 to 64 and several consistent clonal chromosomal abnormalities. These included a partial deletion of chromosome 5 and a translocation involving chromosome 3. In contrast to other megakaryocytic cell lines in which only a small portion of the cells express the megakaryocytic phenotype, nearly all of the Dami cells express platelet glycoproteins. Thus, the Dami cells provide a superior model in which to study human megakaryocyte biochemistry and differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.