Abstract

Extremophilic microorganisms in microbial electrochemical systems have opened new possibilities for waste treatment. Here, a phenomenon of electricity generation under acidophilic condition was found in organic acid fermentation wastewater treatment using microbial fuel cell (MFC). The anodic microbial community analysis showed that the percentage of Firmicutes was 99.03%, which accounted for the vast majority of the microbial community at the late discharge stage with pH 3.0. As the dominant bacterium of Firmicutes, Alicyclobacillus hesperidum EG was isolated and identified. MFC experiments confirmed that Alicyclobacillus hesperidum EG exhibited good electricity generating capability with a maximum power density of 188.1 mW m−2 at 50 °C and low pH. It is the first time that Alicyclobacillus hesperidum EG was discovered as a newly electrochemically active bacterium. Additionally, the morphological analysis combined with electrochemical experiments demonstrated that no nanowires were found in the anodic biofilm of Alicyclobacillus hesperidum EG, and Alicyclobacillus hesperidum EG may produce soluble redox-active small molecules as electron shuttles to facilitate extracellular electron transfer. Based on unique characteristics such as good acid resistance, high temperature resistance, and high electricity generation ability, Alicyclobacillus hesperidum EG exhibited great potential in wastewater treatment and energy recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.