Abstract

Coupling of capillary electrophoresis to electrospray mass spectrometry still remains challenging and a topic of research to find the best interface regarding sensitivity, robustness, and ease of use. Here, a nanoflow sheath liquid interface for CE-ESI-MS is presented and compared to both a standard triple-tube sheath liquid and a porous-tip sheathless interface for three groups of analytes. The nanoflow sheath liquid interface with a separation capillary inserted into a glass emitter was initially characterized to facilitate optimization and method development. Implementation of a shut-off valve, syringe pump, and inline filter enabled easy handling and fast analyses, repeatable both in positive and negative modes (intra-day RSD of 6.6 to 12.0%). The same setup was used for sheathless interfacing by exchanging the emitter and using a porous etched tip separation capillary. Both nanoflow interfaces showed similar performance. Average peak areas using the nanoflow sheath liquid interface were a factor of 38 for 6 organic acids in negative mode, 114 and 36 for the light and heavy chain of a monoclonal antibody, and 13 higher for peptides in positive mode compared to the triple-tube interface. This first direct comparison of the three most common interfaces exhibits a strong improvement in sensitivity to the same extent for both nanoflow interfaces, where sheath liquid interfaces offer full flexibility in method development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.