Abstract
This work demonstrates how quantitative image analysis can assist in the characterization of continuous crystallization processes and in the proper selection of mathematical models for the early assessment of crystal quality. An active pharmaceutical ingredient presenting an elongated crystal habit was crystallized using two stirred tank crystallizers in series. With image analysis of the crystallization magma, the sources of crystal breakage in the crystallization cascade were identified, and the impact on crystal habit was evaluated quantitatively. As it is expected for particles presenting high aspect ratios, crystal breakage preferentially occurs in the smallest plane, perpendicular to the largest dimension. This phenomenon is hardly avoidable in downstream production, but it can be accounted for with a design approach based on the real crystal dimensions. The kinetic rate equations for nucleation and crystal growth were determined based on crystal width, from which a model for the accurate prediction...
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.