Abstract

Nostoc punctiforme is a filamentous cyanobacterium that is capable of dark heterotrophy and cellular differentiation into nitrogen-fixing heterocysts, motile hormogonia, or spore-like akinetes. The study of akinete differentiation at the molecular level has been limited by the asynchronous development and limited number of akinetes formed within a filament. A system in which to study the development and genetic regulation of akinetes was investigated using a zwf mutant lacking glucose-6-phosphate dehydrogenase, the initial enzyme of the oxidative pentose phosphate pathway. Upon dark incubation in the presence of fructose, the zwf(-) strain ceased growth and differentiated into akinete-like cells, whereas the wild-type strain exhibited heterotrophic growth. Dark-induced zwf akinetes exhibited periodic acid-Schiff staining characteristics identical to that observed for wild-type akinetes, and synchronous induction of akinetes occurred in treated cultures. Dark-induced zwf akinetes exhibited increased resistance to the environmental stresses of desiccation, cold, or treatment with lysozyme relative to vegetative cells of both strains. Transcription of the avaK akinete marker gene was strongly induced in developing zwf akinetes as shown by Northern blotting and green fluorescent protein transcriptional reporter fusions. ATP levels did not vary significantly between dark incubated strains, indicating that a signal other than energy level may trigger akinete formation. This phenotypic and genetic evidence showing near-synchronous induction of dark-induced zwf akinetes indicates that this system will provide a valuable tool for the molecular genetic study of akinete development in N. punctiforme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.