Abstract

Frequency standard applications and ultra-high resolution spectroscopy of a confined single ion require traps of drastically reduced dimensions (about or below 1 mm). These small dimensions increase the sensitivity of the trapping behavior to imperfections in the trap geometry and to patch potentials. For the aim of the metrological laser interrogation of a single Ca+ ion, a miniature cylindrical ring trap was built. In order to optimize the laser cooling process and to reach strong binding conditions, the boundaries of the stability diagram and the zones of low confinement as well as the ion motion properties were characterized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.