Abstract
Neutral glycolipids in PC12 cells were examined. A major neutral glycosphingolipid, isolated from a chloroform/methanol extract of the cells, was found to contain only galactose and glucose at a ratio of 3:1 and identified as ceramide tetrahexoside by fast atom bombardment (FAB) mass spectrometry. Its saccharide sequence was determined by a new method developed here using endoglycoceramidase (Ito, M., and Yamagata, T. (1986) J. Biol. Chem. 261, 14278-14282). The glycosphingolipid was digested with endoglycoceramidase to produce oligosaccharide which was subsequently pyridylaminated. The fluorescence-labeled oligosaccharide was digested with a series of specific exoglycosidases and fractionated by high performance liquid chromatography. The 2-aminopyridyl oligosaccharide was hydrolyzed by alpha-galactosidase to give a 2-aminopyridyl oligosaccharide which was identified as 2-aminopyridyl lactose by high performance liquid chromatography, indicating the glycolipid structure to be Gal alpha Gal alpha Gal beta GlcCer. Ceramide trihexoside obtained by limited digestion of the intact glycolipid was clearly identical with ceramide trihexoside obtained from human erythrocytes, according to NMR spectroscopy and methylation analysis. From these and other data on the intact glycolipid, obtained by methylation analysis and NMR spectroscopy, its structure was confirmed as Gal alpha 1-3Gal alpha 1-4Gal beta 1-4Glc beta 1-1Cer, III3-Gal alpha-globotriaosylceramide. This is the first report indicating the presence of this glycosphingolipid in PC12 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.