Abstract

Many long-wave infrared spectroscopic imaging applications are limited by the portability and cost of detector arrays. We present a characterization of a newly available, low-cost, uncooled vanadium oxide microbolometer array, the Seek Compact, in accordance with common infrared detector specifications: noise-equivalent differential temperature (NEDT), optical responsivity spectra, and Allan variance. The Compact’s imaging array consists of 156×206 pixels with a 12-μm pixel pitch, 93% of the pixels yield useful temperature readings. Characterization results show optical response between λ=7.4 and 12 μm with an NEDT of 148 mK (at ≈7 fps). Comparing these results to a research-grade camera, the Seek Compact exhibits a 4× and 48× reduction in weight (2.0/0.5 lbs) and cost ($12,000/$250) but takes 93× longer to achieve the same NEDT (1.55 s/16.6 ms for 45 mK). Additionally, a proof-of-concept spectral imaging experiment of SiN thin films is conducted. Leveraging this price reduction and spectroscopic imaging capability, the Seek Compact has potential in enabling field-deployable and distributed active midinfrared spectroscopic imaging, where cost and portability are the dominate inhibitors and high frame rates are not required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call