Abstract

Experiments have been carried out to characterize further the properties of a new laser-ablation-assisted-plasma-discharge source of metallic aluminium ions. Laser ablation is accomplished by focusing a KrF excimer laser (<1.2 J, 40 ns, 248 nm) onto a solid aluminium target with a fluence of approximately 10 J cm-2. Through gated optical emission spectroscopy, the laser ablation plume optical emission is observed to contain only aluminium neutral atom transitions after approximately 100 ns. With the application of a 3.6 kV, 760 A discharge, the neutral atom plume is transformed into a plasma with the emission dominated by Al+ and Al2+ ion transitions. Through time-resolved spectroscopy, emission intensity from the Al neutral species and the Al2+ ion species is observed to coincide with current peaks through the plasma. Spectroscopic measurements indicate an Al2+ electronic temperature of 3 eV (and an Al+ electronic temperature of 1 eV) which, since local thermodynamic equilibrium (LTE) is applicable for the observed emission, provide a free electron temperature of 1 to 3 eV. A simple LTE model suggests an electron temperature of 1.2 eV for equal Al+ and Al2+ ion fractions. A floating double Langmuir probe measurement 1 mm in front of the laser ablation spot indicates an electron temperature of roughly 1 eV and an ion density of approximately 5*1014 cm-3 during the second current lobe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call