Abstract

Objective:To perform functional characterization of a potentially pathogenic KCNB1 variant identified by clinical exome sequencing of a proband with a neurodevelopmental disorder that included epilepsy and centrotemporal spikes on EEG.Methods:Whole-exome sequencing identified the KCNB1 variant c.595A>T (p.Ile199Phe). Biochemical and electrophysiologic experiments were performed to determine whether this variant affected protein expression, trafficking, and channel functional properties.Results:Biochemical characterization of the variant suggested normal protein expression and trafficking. Functional characterization revealed biophysical channel defects in assembled homotetrameric and heterotetrameric channels.Conclusions:The identification of the KCNB1 variant c.595A>T (p.Ile199Phe) in a neurodevelopmental disorder that included epilepsy with centrotemporal spikes expands the phenotypic spectrum of epilepsies associated with KCNB1 variants. The KCNB1-I199F variant exhibited partial loss of function relative to the wild-type channel. This defect is arguably less severe than previously reported KCNB1 variants, suggesting the possibility that the degree of KCNB1 protein dysfunction may influence disease severity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call