Abstract

Calreticulin (CRT) is a major calcium-sequestering protein in the endoplasmic reticulum and has been implicated in a variety of cellular functions. To analyze the function of CRT in rice, a yeast two-hybrid protein interaction assay was used for identifying interacting proteins. Fourteen of 17 interacting cDNA clones found coded for a novel histidine- and alanine-rich protein (OsHARP) of 342 amino acid residues. The mRNA expression level of OsHARP was up-regulated in rice seedlings treated with gibberellin (GA), but not ABA and showed a similar pattern as OsCRT mRNA. Rice plants transformed with the OsHARP promoter-GUS construct showed GUS staining in the basal parts of leaf sheaths, and although GUS activity increased when treated with GA(3), it was not as high an increase as when mRNA was analyzed. To elucidate the role of OsHARP in leaf sheath elongation, antisense OsHARP transgenic rice lines were constructed. The antisense OsHARP transgenic rice plants were consistently shorter than the vector control under normal conditions. To examine whether OsHARP expression would affect other proteins, basal leaf sheaths from antisense OsHARP transgenic rice plants were analyzed using proteomic techniques. In antisense transgenic-rice OsHARP plants, OsCRT was down-regulated and the levels of 20 other proteins were changed compared to the pattern of the vector control. These results signify an important role of HARP in rice leaf sheath cell division or elongation and suggest that CRT may interact with HARP during certain stages of development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.