Abstract

A RF-only quadrupole collision cell of new design has been evaluated for use in tandem mass spectrometry experiments as a component of a triple quadrupole mass spectrometer. The new design permits operation at values of collision gas thickness higher by 1 order of magnitude than those used in most cells of this type. When operated at sufficiently high collision gas pressures, the transmission efficiency for precursor ions increases with increasing pressure, often to values greater than those observed in the absence of collision gas. Simultaneously, the attainable resolving power for fragment ions across the entire mass-to-charge ratio range, even for multiply charged precursors, also increases to the point where isomers of a quadruply charged fragment are resolved. The performance of the cell, judged in terms of yields and resolution of fragment ions, has been investigated as a function of the nature and pressure of collision gas, the kinetic energy of the precursor ions that enter the cell, and of the size and charge state of the precursors. The enhanced performance is explicable in terms of a marked deceleration of all ions that emerge from the cell to very low energies, probably a few tens of millielectronvolts, so that the cell effectively acts as an ion source for the second mass filter (fragment ion analyzer) to provide a spectrum of ions of fixed axial energy. The high transmission efficiency appears to arise from a collisional focusing effect analogous to that exploited in three-dimensional RF ion traps. The low axial energies imply that ion transit times through the cell are sufficiently long (several milliseconds) that, in precursor ion experiments where the first mass filter is scanned, a hysteresis effect is observed. This implies that in this operating mode compromises must be sought between scan speed and quality of peak shape. Examples are given of spectra obtained under realistic operating conditions that employ flow injection of samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call