Abstract

Elongation Factor P (EF-P) is an essential component of bacterial protein synthesis, enhancing the rate of translation by facilitating the addition of amino acids to the growing peptide chain. Using purified Staphylococcus aureus EF-P and a reconstituted Escherichia coli ribosomal system, an assay monitoring the addition of radiolabeled N-formyl methionine to biotinylated puromycin was developed. Reaction products were captured with streptavidin-coated scintillation proximity assay (SPA) beads and quantified by scintillation counting. Data from the assay were used to create a kinetic model of the reaction scheme. In this model, EF-P binding to the ribosome essentially doubled the rate of the ribosomal peptidyl transferase reaction. As described here, EF-P bound to the ribosomes with an apparent K(a) of 0.75 microM, and the substrates N-fMet-tRNA and biotinylated puromycin had apparent K(m)s of 19 microM and 0.5 microM, respectively. The assay was shown to be sensitive to a number of antibiotics known to target ribosomal peptide bond synthesis, such as chloramphenicol and puromycin, but not inhibitors that target other stages of protein synthesis, such as fusidic acid or thiostrepton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.