Abstract

A large-sized glucose polymer was isolated by pronase digestion from line PC12 pheochromocytoma cells metabolically labeled with [1-3H]galactose. The polymer was included on a column of concanavalin A-Sepharose and could be eluted with 10 mM methyl-alpha-mannoside. Its slight retention in a column of Bio-Gel A-5m suggested that its molecular weight was in the several millions. Glucose was the component monosaccharide and there were two minor lipophilic components present. The polymer was digested with alpha-amylase into a series of oligosaccharides and was cleaved by glucoamylase into glucose residues. The disaccharide obtained by digestion with alpha-amylase was identified as maltose in several HPLC systems and by NMR spectroscopy. NMR measurement revealed the trisaccharide to be maltotriose. Susceptibility of the polymer molecule to alpha-amylase, and the digestion products obtained, indicated a resemblance to glycogen. An analysis for saccharide compositions before and after reduction of the polymer suggested the presence of an aglycon part. Contrary to expectations based on the presence of this moiety, the polymer displayed good solubility in neutral organic solvents. Two-thirds of the glucose polymer was also soluble in 10% TCA. A similar glucose polymer was isolated from neuronal cells of rat embryos metabolically labeled with [1-3H]galactose. Mouse neuroblastoma cells did not synthesize the polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.