Abstract

A stable apoprotein has been prepared from a soluble purified bovine thyroid iodotyrosine deiodinase, previously shown to be an FMN-containing flavoprotein requiring dithionite for enzymatic activities. The apoprotein binds FMN (Ka = 1.47 x 10(8) M-1) with an almost complete restoration of enzymatic activity. It can also bind FAD (Ka = 0.58 x 10(8) M-1) with partial restoration of activity, but does not bind riboflavin. Photoreduction of the holoenzyme in presence of excess of its free cofactor, FMN, supported enzyme activity at a level of 50% of that obtained with dithionite; substituting FAD or riboflavin for FMN produced, respectively, 20 and 11% of the dithionite-supported activity. The oxidation-reduction potential (E1) of the couple semiquinone/fully reduced enzyme is -0.412 V at pH 7 and 25 degrees C. The value (E2) for the oxidized/semiquinone couple is -0.190 V at pH 7 and 25 degrees C. Potentiometric titrations with sodium hydrosulfite suggests that the enzyme is reduced in two successive 1-electron oxidation-reduction steps. Effects of pH on E1 suggest ionization of the protonated flavin with an ionization constant of 5.7 x 10(-7). The highly negative oxidation-reduction potential for the fully reduced enzyme species and the apparent requirement for full reduction for enzymatic activity suggests that in NADPH-mediated microsomal deiodination an NADPH-linked electron carrier of suitably negative midpoint potential is a probable intermediate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call