Abstract

Two oxoiron(IV) isomers (R 2a and R 2b) of general formula [FeIV (O)(R PyNMe3 )(CH3 CN)]2+ are obtained by reaction of their iron(II) precursor with NBu4 IO4 . The two isomers differ in the position of the oxo ligand, cis and trans to the pyridine donor. The mechanism of isomerization between R 2a and R 2b has been determined by kinetic and computational analyses uncovering an unprecedented path for interconversion of geometrical oxoiron(IV) isomers. The activity of the two oxoiron(IV) isomers in hydrogen atom transfer (HAT) reactions shows that R 2a reacts one order of magnitude faster than R 2b, which is explained by a repulsive noncovalent interaction between the ligand and the substrate in R 2b. Interestingly, the electronic properties of the R substituent in the ligand pyridine ring do not have a significant effect on reaction rates. Overall, the intrinsic structural aspects of each isomer define their relative HAT reactivity, overcoming changes in electronic properties of the ligand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.