Abstract

Drift-step-recovery diodes (DSRDs) are fast-opening switches capable of delivering nanosecond-scale high-voltage (HV) pulses into a load. The HV capability is achieved by stacking DSRD dies in series. In this paper, we characterize a DSRD die based on silicon epitaxial layers, which was designed and manufactured at the Soreq Nuclear Research Center. In the static characterization, we have measured the diode's forward- and reverse-blocking voltages, and the junction capacitance. In the dynamic characterization, we have measured the peak voltage and its rise time for a single die, and up to a stack of 32 dies in series, where the stack was operated at current densities of up to ~1.3 kA/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . The shortest rise time was 0.65 ns from a stack of five dies. An HV increase of 250 V per die was obtained. The maximum measured peak voltage was 6.09 kV with a rise time of 2.2 ns, and these results being limited by the setup capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.