Abstract

A detailed experimental and theoretical characterization of a self-adaptive solid-state laser is presented. The system uses a saturable gain medium (Nd:YAG amplifier) as the adaptive element in an externally injected self-intersecting loop geometry. We demonstrate energy output >300 mJ, high energy reflectivity >10/sup 4/, low input energy threshold of /spl sim/5 /spl mu/J, and phase-conjugate properties of the system that compensate for both intracavity and extracavity phase distortions. The spatial output beam size is compared to a Gaussian mode analysis based on ABCD ray transfer matrices. The temporal, spectral, energy, and threshold characteristics are compared to one-dimensional analytical and transient numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call