Abstract

A model of coherent upper conditional prevision for bounded random variables is proposed in a metric space. It is defined by the Choquet integral with respect to Hausdorff outer measure if the conditioning event has positive and finite Hausdorff outer measure in its Hausdorff dimension. Otherwise, when the conditioning event has Hausdorff outer measure equal to zero or infinity in its Hausdorff dimension, it is defined by a 0–1 valued finitely, but not countably, additive probability. If the conditioning event has positive and finite Hausdorff outer measure in its Hausdorff dimension it is proven that a coherent upper conditional prevision is uniquely represented by the Choquet integral with respect to the upper conditional probability defined by Hausdorff outer measure if and only if it is monotone, comonotonically additive, submodular and continuous from below.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.