Abstract

AbstractThe GE81112 tetrapeptides are a small family of unusual nonribosomal peptide congeners with potent inhibitory activity against prokaryotic translation initiation. With the exception of the 3‐hydroxy‐l‐pipecolic acid unit, little is known about the biosynthetic origins of the non‐proteinogenic amino acid monomers of the natural product family. Here, we elucidate the biogenesis of the 4‐hydroxy‐l‐citrulline unit and establish the role of an iron‐ and α‐ketoglutarate‐dependent enzyme (Fe/αKG) in the pathway. Homology modelling and sequence alignment analysis further facilitate the rational engineering of this enzyme to become a specific 4‐arginine hydroxylase. We subsequently demonstrate the utility of this engineered enzyme in the synthesis of a dipeptide fragment of the antibiotic enduracidin. This work highlights the value of applying a bioinformatics‐guided approach in the discovery of novel enzymes and engineering of new catalytic activity into existing ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call