Abstract

Development of the cellular complexity of the vertebrate neural retina relies on an intricate interplay between extracellular signals and intracellular factors. In particular, transcription factors play a key role in determining the competence of cells to respond to extracellular signals. We have previously shown that, in the developing chick neural retina, expression of the retinoid X receptor-γ (RXR-γ2) nuclear receptor gene is restricted to photoreceptors. To characterize the mechanisms that regulate expression of this gene in the neural retina, we isolated a chicken RXR-γ genomic clone containing the RXR-γ2 promoter and mapped the transcription initiation site by means of ribonuclease protection. We analysed promoter activity by transient transfection of luciferase reporter gene constructs into cultured cells isolated from embryonic-chick neural retina or facial mesenchyme, which does not normally express detectable RXR-γ2 transcripts. The DNA fragment lying between nucleotides -657 and +37 with respect to the transcription initiation site had basal promoter activity in both cell types. The fragment lying between nucleotides -1198 and -991 directed 10-20-fold higher levels of luciferase activity in neural retina cells, but only basal levels in facial mesenchyme cells. This 208 bp fragment also enhanced the activity of the simian-virus-40 promoter, when placed upstream in either orientation. Electrophoretic-mobility-shift assays using this 208 bp fragment demonstrated the formation of four neural retina-specific protein-DNA complexes. These results indicate that regulation of RXR-γ2 transcription in the developing chick neural retina involves the binding of one or more neural retina-specific protein factors to an enhancer element located approx. 1 kbp upstream of the transcription initiation site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call