Abstract

We previously demonstrated—through the isolation of RNA-cleaving deoxyribozymes by in vitro selection that are catalytically active in highly acidic solutions—that DNA, despite its chemical simplicity, could perform catalysis under challenging chemical conditions [Liu,Z., Mei,S.H., Brennan,J.D. and Li,Y. (2003) J. Am. Chem. Soc. 125, 7539–7545]. One remarkable DNA molecule therefrom is pH4DZ1, a self-cleaving deoxyribozyme that exhibits a kobs of ∼1 min−1 at pH 3.8. In this study, we carried out a series of experiments to examine the sequence and catalytic properties of this acidic deoxyribozyme. Extensive nucleotide truncation experiments indicated that pH4DZ1 was a considerably large deoxyribozyme, requiring ∼80 out of the original 123 nt for the optimal catalytic activity. A reselection experiment identified ten absolutely conserved nucleotides that are distributed in three catalytically crucial sequence elements. In addition, a trans deoxyribozyme was successfully designed. Comparison of the observed rate constant of pH4DZ1 with experimentally determined rate constant for the uncatalyzed reaction revealed that pH4DZ1 achieved a rate enhancement of ∼106-fold. This study provides valuable information about this low-pH-functional deoxyribozyme and paves way for further structural and mechanistic characterization of this unique catalytic DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call