Abstract

A protein kinase that is activated by calcium and lipid has been partially purified from the plasma membrane of oat roots. This protein kinase cross-reacts with four monoclonal antibodies directed against a soluble calcium-dependent protein kinase from soybean described previously [Putman-Evans, C. L., Harmon, A. C., & Cormier, M. J. (1990) Biochemistry 29, 2488-2495; Harper, J. F., Sussman, M. R., Schaller, G. E., Putnam-Evans, C., Charbonneau, H., & Harmon, A. C. (1991) Science 252, 951-954], indicating that the oat enzyme is a member of this calcium-dependent protein kinase family. Immunoblots demonstrate that the membrane-derived protein kinase is slightly larger than that observed in the cytosolic fraction of oat. Limited digestion of the membrane-derived kinase with trypsin generates a smaller water-soluble kinase that is still activated by calcium but is no longer activated by lipid. When posthomogenization proteolysis is minimized, the bulk of the immunoreactive kinase material is localized in the membrane. These results suggest that a calcium-dependent protein kinase observed in the supernatant fraction of oat extracts may originate in situ from a calcium- and lipid-dependent protein kinase which is associated with the oat plasma membrane. They further indicate that, in contrast to animal cells, the predominant calcium- and lipid-dependent protein kinase associated with the plasma membrane of plant cells has biochemical properties and amino acid sequence unlike protein kinase C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.