Abstract

In this study, the capacity of cadmium (Cd)-resistant plant growth-promoting bacteria (PGPB) Burkholderia sp. SRB-1 (SRB-1) and its mechanisms were explored through morphological characterizations, biochemical response, plant growth-promoting traits, and functional gene expression patterns. The results showed that SRB-1 was an excellent Cd-resistant bacteria (MIC was 420mg L-1), and its maximum Cd removal rate reached 72.25%. Biosorption was the main removal method of Cd for SRB-1, preventing intracellular Cd accumulation and maintaining cellular metabolism. Various functional groups on the cell wall were involved in Cd binding, which deposited as CdS and CdCO3 on the cell surface according to XPS analysis and might be critical for reducing Cd physiochemical toxicity. Furthermore, metals exporting (zntA, czcA, czcB, czcC), detoxification (dsbA, cysM), and antioxidation (katE, katG, SOD1) related genes were annotated in the SRB-1 genome. The results of Cd distribution and antioxidative enzyme activity in SRB-1 also illustrated that Cd2+ efflux and antioxidative response were the main intracellular Cd-resistant mechanisms. These conclusions were further verified by qRT-PCR analysis. Overall, the strategies of extracellular biosorption, cation efflux, and intracellular detoxification jointly build the Cd-resistant system, which invested Burkholderia sp. SRB-1 with potential for bioremediation in heavily Cd-contaminated environmental sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call