Abstract

Triacylglycerols (triglycerides, TAGs) are the major carbon and energy storage forms in various organisms, and important components of cellular membranes and signaling molecules; they have essential functions in multiple physiological processes and stress regulation. Acyl-CoA: diacylglycerol acyltransferase (DGAT) catalyzes the final and only committed acylation step in the synthesis of TAGs in eukaryotes. The present work identified and isolated a novel gene, UpDGAT1, from the green tide alga Ulva prolifera. The activity of UpDGAT1 was confirmed by heterologous expression in a Saccharomyces cerevisiae TAG-deficient quadruple mutant. Results of thin-layer chromatography and BODIPY staining indicated that UpDGAT1 was able to restore TAG synthesis and lipid body formation in the yeast. Lipid analysis of yeast cells revealed that UpDGAT1 showed broad substrate specificity, accepting saturated as well as mono- and polyunsaturated acyl-CoAs as substrates. High salinity and high temperature stresses increased UpDGAT1 expression and TAG accumulation in U. prolifera. The present study provides clues to the functions of UpDGAT1 in TAG accumulation in, and stress adaptation of, U. prolifera.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call