Abstract

An agar well diffusion assay (AWDA) was used to isolate a high bacteriocin-producing strain with a broad spectrum of antibacterial activity, strain MXG-68, from Inner Mongolia traditional fermented koumiss. Lactobacillus plantarum MXG-68 was identified by morphological, biochemical, and physiological characteristics and 16S rDNA analysis. The production of antibacterial substance followed a growth-interrelated model, starting at the late lag phase of 4h and arriving at a maximum value in the middle of the stationary phase at 24h. Antibacterial activity was abolished or decreased in the presence of pepsin, chymotrypsin, trypsin, proteinase, and papain K. The results showed that antibacterial substances produced by L. plantarum MXG-68 were proteinaceous and could thus be classified as the bacteriocin, named plantaricin MXG-68. The molar mass of plantaricin MXG-68 was estimated to be 6.5kDa, and the amino acid sequence of its N-terminal was determined to be VYGPAGIFNT. The mode of plantaricin MXG-68 action was determined to be bactericidal. Bacteriocin in cell-free supernatant (CFS) at pH7 was stable at different temperatures (60°C, 80°C, 100°C, 121°C for 30min; 4°C and - 20°C for 30days), as well as at pH2.0-10.0. Antibacterial activity maintained stable after treatment with organic solvents, surfactants, and detergents but increased in response to EDTA. Response surface methodology (RSM) revealed the optimum conditions of bacteriocin production in L. plantarum MXG-68, and the bacteriocin production in medium optimized by RSM was 26.10% higher than that in the basal MRS medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call