Abstract

Aroma is an important sensory parameter of food products. Lactic acid bacteria have enzymatic activities that could be important in the modification of food aroma. The complete genome sequence from Lactobacillus plantarum WCFS1 shows a gene (lp_3054) putatively encoding a protein with benzyl alcohol dehydrogenase activity. To confirm its enzymatic activity lp_3054 from this strain has been overexpressed and purified. Protein alignment indicated that lp_3054 is a member of the family of NAD(P)-dependent long-chain zinc-dependent alcohol dehydrogenases. In lp_3054 all of the residues involved in zinc and cofactor binding are conserved. It is also conserved the residue that determines the specificity of the dehydrogenase toward NAD (+) rather than NADP (+) and, therefore, L. plantarum benzyl alcohol dehydrogenase is less active in the presence of NADP (+) than in the presence of NAD (+). The purified enzyme exhibits optimal activity at pH 5.0 and 30 degrees C. The kinetic parameters K m and V max on benzyl alcohol as a substrate were, respectively, 0.23 mM and 204 mumol h (-1) mg (-1). Besides its activity toward benzyl alcohol, it showed activity against nerol, geraniol, phenethyl alcohol, cinnamyl alcohol, and coniferyl alcohol, all of which are volatile compounds involved in determining food aroma. The biochemical demonstration of a functional benzyl alcohol dehydrogenase activity in this lactic acid bacteria species should be considered when the influence of bacterial metabolism in the aroma of food products is determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call