Abstract
Carotenoids are essential components of the photosynthetic apparatus and precursors of plant hormones, such as strigolactones (SLs). SLs are involved in various aspects of plant development and stress-response processes, including the establishment of root and shoot architecture. SL biosynthesis begins with the reversible isomerization of all-trans-carotene into 9-cis-β-carotene, catalysed by DWARF27 β-carotene isomerase (D27). Sequence comparisons have revealed the presence of D27-related proteins in photosynthetic eukaryotes and cyanobacteria lacking SLs. To gain insight into the evolution of SL biosynthesis, we characterized the activity of a cyanobacterial D27 protein (CaD27) from Cyanobacterim aponinum, using carotenoid-accumulating Escherichia coli cells and in vitro enzymatic assays. Our results demonstrate that CaD27 is an all-trans/cis and cis/cis-β-carotene isomerase, with a cis/cis conversion preference. CaD27 catalysed 13-cis/15-cis-, all-trans/9-cis-β-carotene, and neurosporene isomerization. Compared with plant enzymes, it exhibited a lower 9-cis-/all-trans-β-carotene conversion ratio. A comprehensive genome survey revealed the presence of D27 as a single-copy gene in the genomes of 20 out of 200 cyanobacteria species analysed. Phylogenetic and enzymatic analysis of CaD27 indicated that cyanobacterial D27 genes form a single orthologous group, which is considered an ancestral type of those found in photosynthetic eukaryotes. This article is part of the theme issue 'The evolution of plant metabolism'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions of the Royal Society of London. Series B, Biological sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.