Abstract

Characteristics of 4H-SiC nMOSFETs with arsenic-doped S/D and NbNi silicide contacts in harsh environments of high-temperature up to 450°C, and high gamma-ray radiation up to over 100 Mrad, were investigated. At high temperature, field effect mobility increased as proportional to T3/2, and threshold voltage was shifted with temperature coefficients of -4.3 mV/K and -2.6 mV/K for oxide thicknesses of 10 nm and 20 nm, respectively. After Co60 gamma-ray exposure of 113 Mrad, the field effect mobility was varied within 8% for oxide thickness of 10 nm, however for 20 nm oxide thickness, this variation was 26%. The threshold voltage shifts were within 6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call