Abstract
[3H]GTP [guanosine triphosphate] and [3H]GMP-PNP [guanosine 5'-(beta, 8-imino)triphosphate, a nonmetabolized analog of GTP] have been utilized as ligands to characterize binding sites of guanine nucleotides to rat brain membranes. Binding of both [3H]GTP and [3H]GMP-PNP is saturable, with respective KD values of 0.76 and 0.42 microM. The number of binding sites for GMP-PNP (4 nmol/g) is three times greater than for GTP (1.5 nmol/g). This discrepancy is caused by rapid degradation of GTP to guanosine by brain membranes, which can be partially prevented by addition of 100 microM-ATP. The binding of [3H]guanine nucleotides is selective, with approximately equipotent inhibition by GTP, GDP, and GMP-PNP (at 0.2--1.0 microM), but no inhibition by other nucleotides at 100 microM concentrations. The bindings sites for guanine nucleotides in brain membranes appear not to be associated with microtubules, since treatments that reduce [3H]colchicine binding by 65% have no effect on [3H]GTP binding. [3H]Guanine nucleotide binding is widely distributed in various organs, with highest levels in liver and brain and lowest levels in skeletal muscle. The characteristics of these binding sites in brain show specificity properties of sites that regulate neurotransmitter receptors and adenylate cyclase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.