Abstract

In vitro micromass culture systems have been proposed as an alternative method for developmental toxicity assessment to reduce the need for resource-intensive in vivo toxicity testing. In this study, a three-dimensional in vitro embryonic mouse midbrain culture system is characterized in two mouse strains to facilitate gene x environment considerations. Gestational day (GD) 11 C57BL/6 or GD 12 A/J mouse midbrain cells were isolated and cultured in high-density micromass format for 22days in vitro (DIV). Hematoxylin intensity and protein content revealed that neuronal differentiation increases linearly over time in both C57BL/6 and A/J cultures. Protein expression showed time-dependent proliferation markers (PCNA) increased significantly between DIV 4–6 compared to DIV 1. Early and late differentiation markers (e.g. β-tubulin III and NMDAɛ1) were expressed between DIV 6–8 and DIV 8–15, respectively. Immunohistochemistry and protein expression results for proliferation and differentiation markers were concordant. Protein expression patterns for the two mouse strain micromass systems were similar. This study characterizes a novel method for investigating early neurogenesis and may be used to characterize neurodevelopmental toxicity in vitro. Our findings show how the use of different mouse strains in neurodevelopmental studies may extend test systems for gene and environment interaction studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.