Abstract

This paper describes a method for the characterization of coronary artery motion using multislice computed tomography (MSCT) volume sequences. Coronary trees are first extracted by a spatial vessel tracking method in each volume of MSCT sequence. A point-based matching algorithm, with feature landmarks constraint, is then applied to match the 3-D extracted centerlines between two consecutive instants over a complete cardiac cycle. The transformation functions and correspondence matrices are estimated simultaneously, and allow deformable fitting of the vessels over the volume series. Either point-based or branch-based motion features can be derived. Experiments have been conducted in order to evaluate the performance of the method with a matching error analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call