Abstract

The aim of this study was to characterize 27 feed additives marketed as mycotoxin binders and to screen them for their in vitro zearalenone (ZEN) adsorption. Firstly, 27 mycotoxin binders, commercially available in Belgium and The Netherlands, were selected and characterized. Characterization was comprised of X-ray diffraction (XRD) profiling of the mineral content and d-spacing, determination of the cation exchange capacity (CEC) and the exchangeable base cations, acidity, mineral fraction, relative humidity (RH) and swelling volume. Secondly, an in vitro screening experiment was performed to evaluate the adsorption of a single concentration of ZEN in a ZEN:binder ratio of 1:20,000. The free concentration of ZEN was measured after 4 h of incubation with each of the 27 mycotoxin binders at a pH of 2.5, 6.5 and 8.0. A significant correlation between the free concentration of ZEN and both the d-spacing and mineral fraction of the mycotoxin binders was seen at the three pH levels. A low free concentration of ZEN was demonstrated using binders containing mixed-layered smectites and binders containing humic acids.

Highlights

  • The contamination of feed with mycotoxins is a continuing feed safety issue, leading to economic losses in animal production [1]

  • These samples represent the vast majority of additives marketed as mycotoxin binders in Belgium and The Netherlands and are available in most European countries

  • The non-mineral content of a binder with a low mineral fraction (i.e., Sample Numbers 5, 12, 15 and 16) was confirmed by information provided by the manufacturer of the binder, who labelled these products as containing humic acids, leonardite or yeast-derived binders

Read more

Summary

Introduction

The contamination of feed with mycotoxins is a continuing feed safety issue, leading to economic losses in animal production [1]. A variety of methods for the decontamination of feed has been developed, but the addition of mycotoxin detoxifiers to the feed is the most commonly-used method [2,3]. Mycotoxin binders aim to prevent the absorption of the mycotoxins from the intestinal tract of the animal by adsorbing the toxins to their surface. Mycotoxin binders are generally clay- (inorganic) or yeast-derived (organic) products [3]. On the other hand, aim to alter the chemical structure of the mycotoxins and, reduce their toxicity. Mycotoxin modifiers are usually of microbiological origin comprised of whole cultures of bacteria or yeasts, as well as extracted components, such as enzymes [4]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.