Abstract

TNF-α converting enzyme (TACE) is a validated therapeutic target for the development of oral tumor necrosis factor-α (TNF-α) inhibitors. Here we report the pre-clinical results and characterization of a selective and potent TACE inhibitor, (2 R, 3 S)-2-({[4-(2-butynyloxy)phenyl]sulfonyl}amino)- N,3-dihydroxybutanamide (TMI-2), in various in vitro and in vivo assays. TMI-2 is a potent TACE inhibitor in an enzymatic FRET assay (IC50=2 nM). It is more than 250-fold selective over MMP-1, -7, -9, -14, and ADAM-10 in vitro. In cell-based assays and human whole blood, TMI-2 inhibits lipopolysaccharide (LPS)-induced TNF secretion with IC50s<1 uM. Importantly, TMI-2 inhibits the spontaneous release of TNF-α in human synovium tissue explants of rheumatoid arthritis patients with an IC50 of 0.8 μM. In vivo, TMI-2 potently inhibits LPS-induced TNF-α production in mice (ED50=3 mg/kg). In the adjuvant-induced arthritis (AIA) model in rats, treatment with TMI-2 at 30 mg/kg and 100 mg/kg p.o. b.i.d. was highly effective in reducing joint arthritis scores. In a semi-therapeutic collagen-induced arthritis (CIA) model in mice, TMI-2 is highly effective in reducing disease severity scores after oral treatment at 100 mg/kg twice per day. In summary, TMI-2 is a potent and selective TACE inhibitor that inhibits TNF-α production and reduces the arthritis scores in pre-clinical models. TMI-2 represents a novel class of TACE inhibitors that may be effective and beneficial in the treatment of rheumatoid arthritis as well as other TNF-mediated inflammatory autoimmune diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.