Abstract

Recent studies suggest that the highest concentration of 14C contamination present in reactor-irradiated graphite exists on the surfaces and within near-surface layers. Surface-sensitive analysis techniques (XPS, ToF-SIMS, SEM/EDS and Raman) were employed to determine the chemical nature of 14C on irradiated NBG-25 (nuclear grade) graphite surfaces. Several 14C precursor species are identified on the surfaces of irradiated NBG-25; the quantities of these species decrease at sub-surface depths, which further suggests that 14C formation is predominantly a surface-concentrated phenomenon. The elevated presence of several surface oxide complexes on irradiated NBG-25 surfaces are attributed directly to neutron irradiation. Larger numbers of oxide bonds were found on irradiated NBG-25 surfaces (when compared to unirradiated samples) in the form of interlattice (e.g. ether) and dangling (e.g. carboxylate and ketone) bonds; the quantities of these bond types also decrease with increasing sub-surface depths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call