Abstract

To identify and assess the specificity of the 1,25-dihydroxyvitamin D 3 chick intestinal cytoplasmic receptor's nucleotide binding site, a competitive DNA-cellulose binding assay was utilized. Unlike other steroid hormone receptors, the 1,25-dihydroxyvitamin D 3-receptor complex binds homologous DNA at 4 °C and does not appear to undergo thermal- or salt-induced activation. Data are presented which suggest that receptor binding discriminates between double-stranded DNA and RNA but is not specific with respect to DNA base sequences. However, DNA base sequence selectivity by 1,25-dihydroxyvitamin D 3-receptor complexes is observed using synthetic polydeoxyribonucleotides, particularly, poly(dA-dT) · poly(dA-dT) and poly(dA) · poly(dT). Preference for double-stranded over single-stranded DNA was also observed. Consistent with this finding, both actinomycin D and ethidium bromide caused a dose-dependent inhibition of receptor binding to DNA-cellulose. It is concluded that the 1,25-dihydroxyvitamin D 3-receptor complex has specificity for AT-rich segments of double-stranded DNA and that this interaction is not merely electrostatic, but also involves hydrophobic interaction with the major and/or minor grooves of the DNA helix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call