Abstract

Boron-doped and nondoped ultrafine β-silicon carbide (β-SiC) powders were synthesized via the carbothermal reduction of SiC precursors at temperatures of 1773–1973 K. Although the reaction rate of carbothermal reduction was generally higher when a boron-doped precursor was used, the reaction rate for the boron-doped precursor was reduced considerably at 1873 K. For boron-doped and nondoped precursors, the reaction rates were almost the same. Powder characterization via transmission electron microscopy indicated that the suppression of the reaction rate for boron-doped precursor at 1873 K was due to the formation of a special coexistent system with two types of particle agglomerates. As expected, boron doping inhibited the particle growth in the synthesis of SiC powder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.