Abstract
An accurate characterization method for a multispectral high-dynamic-range (HDR) imaging system is proposed by combining multispectral and HDR imaging technologies. The multispectral HDR imaging system, which can acquire the visible spectrum at many wavelength bands, can provide an accurate color reproduction and physical radiance information of real objects. An HDR camera is used to capture an HDR image without multiple exposures and a liquid crystal tunable filter (LCTF) is used to generate multispectral images. Due to its several limitations in the multispectral HDR imaging system, a carefully designed and an innovative characterization algorithm is presented by considering a logarithmic camera response of the HDR camera and different spectral transmittance of the LCTF. The proposed method efficiently and accurately recovers the full spectrum from the multispectral HDR images using a transformation matrix and provides device-independent color information (e.g., CIEXYZ and CIELAB). The transformation matrix is estimated by training the estimated sensor responses from a multispectral HDR imaging system and the reflectance measurements from a spectroradiometer using Moore–Penrose pseudoinverse matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.