Abstract

The aim of the present study was to increase bioavailability after oral administration. In this study, Panaxnotoginseng saponins (PNS) was entrapped within the long-circulating nanoparticles (LCNs) by the multiple emulsion method. The PNS-LCNs were characterized in terms of size, zeta potential, morphology, thermal properties, drug entrapment efficiency (EE), and in vitro release of the PNS. In addition, the intestinal absorption of PNS-LCNs in vitro was investigated. The pharmacokinetics of PNS-LCNs following oral administration was determined over 72 h in male rats. It was found that the mean particle size and zeta potential of the PNS-LCNs were 147±4.5nm and −44.7±1.5mV, respectively, and the entrapment efficiency (EE) was 53.93%±0.69%. differential scanning calorimetry (DSC) indicated that PNS has different states in PNS-LCNs and original PNS. The release pattern of the PNS-LCNs followed the Weibull model. The release parameters (T50, TD) were observed to be higher for PNS-LCNs compared with original PNS (p< 0.01) in vitro release. The intestinal absorption study indicated that the intestinal permeability coefficient (Papp) of PNS-LCNs was higher than original PNS’s. The pharmacokinetics of PNS-LCNs was studied after oral administration to male rats, PNS-LCNs provided greater area under the concentration-time curve (AUC), higher plasma concentration (Cmax), longer mean residence time (MRT) and median time to maximum drug concentration (Tmax). LCNs could be used for improving permeability and increased bioavailability after oral administration of PNS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call