Abstract

Chlorophyll-deficiency mutants are useful as genetic markers and as materials for studying the photosynthesis process. We characterized the inheritance of the gene controlling an opaque leaf (OL) trait in mungbean (Vigna radiata (L.) Wilczek). An F2 population was developed from the cross between the OL mutant and ‘Berken’, an Australian mungbean cultivar, to study inheritance and molecular tagging. The population was advanced by selfing to produce F5 lines from which two normal lines and two OL lines were randomly chosen to study chlorophyll content, seed growth and development, and seed cell morphology. The chlorophyll content in opaque leaf was lower than normal and thus was expected to have lower photosynthetic activity. This resulted in yellowish and shrinking pods and seeds within 15 days after flowering, while those from normal plants extended their growth up to 18 days. The cotyledon transfer cells of the OL plants deformed at 12 days and deteriorated at 14 days after flowering. The OL trait was controlled by a single recessive ol gene which was independent from the genes controlling petiole color and growth habit. We used 193 AFLP primer combinations to tag this gene and found that the marker AGG/ATA was linked with the ol gene at a distance of 3.4 cM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call