Abstract

Residual injury of atrazine to the succeeding crops has been frequently reported. It is necessary to find a solution for the detoxification of atrazine contaminated soil. A high-efficient bacterial strain Arthrobacter sp. C2 for atrazine degradation was isolated in this study. The genomic information of the isolate C2, and its degradation characteristics and potential application in detoxification of atrazine contaminated soil were investigated. The results indicated that the isolate C2 genome contained 4,305,216 bp nucleotides, three plasmids, and 4705 coding genes. The degradation rates of atrazine at levels of 1, 10, 100 mg/L by the isolate C2 were 0.34, 1.94, 18.64 mg/L/d, respectively. The optimum temperature and pH for the isolate C2 to degrade atrazine were 30 °C and 7.0–9.0. Based on the metabolites detected by UPLC-TOF-MS/MS and genome annotation of the isolate C2, a common metabolic pathway of atrazine was proposed as that atrazine is firstly dechlorinated into hydroxyatrazine, and subsequently to N-isopropylammelide via dealkylation, and ultimately deaminated to cyanuric acid. Introduction of the isolate C2 into soil can enhance degradation of atrazine and thus eliminate the toxic effect of this herbicide on wheat growth. Our results indicate that the strain C2 could be a potential bioresource for bioremediation of atrazine contaminated soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.