Abstract

ZnAl 2O 4:Mn green light emitting powder phosphors have been prepared by urea combustion technique involving furnace temperatures about 500 °C in a short time (<5 min). The prepared powders were characterized by X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectrometry and the surface area measurements by a Brunauer–Emmet–Teller (BET) adsorption isotherms. The EPR spectrum exhibits a resonance signal at g≈2.0, which shows a six-line hyperfine structure (hfs). From the EPR spectra the spin-Hamiltonian parameters have been evaluated at room temperature as well as at 110 K. EPR and photoluminescence (PL) studies revealed that manganese ions were present in divalent state and the site symmetry around Mn 2+ ions is distorted tetrahedral. The spin concentration ( N), the paramagnetic susceptibility ( χ) and the zero-field splitting parameter ( D) have been evaluated and discussed. The green emission at 511 nm in ZnAl 2O 4:Mn phosphor is assigned to a transition from the upper 4T 1→ 6A 1 ground state of Mn 2+ ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.