Abstract
The bulk deposition of both PAHs and metals is a significant, mounting issue for the urban ecological environment. However, studies generally performed on these pollutants have focused on the regions surrounding a pollution source; thus, it most likely overestimated pollutants in the cities. Therefore, 72 atmospheric bulk deposition samples were collected from six sites located along a transect from the suburbs to the city center in Shanghai over a 1-year period (February 1, 2012 to January 31, 2013). The seasonal variation, spatial distribution, and sources of multiple metals (Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Pb, K, Na, and Mg) and 16 polycyclic aromatic hydrocarbon (PAH) compounds were determined. The results indicated that the annual average rate of dust deposition in Shanghai was 43,100 ± 54,800 mg/m2/year. There were significant or high enrichments of Cu, Zn, Cd, and Pb, and higher depositional fluxes were observed for Zn, Pb, and Cd in the Huangpu district and for Cu in the Minhang district. The deposition fluxes of the PAHs exhibited the following order: urban fringe zone > city center > rural zone (background site). However, unlike in northern Chinese cities, the high-molecular-weight PAHs accounted for most of the PAHs. Furthermore, there were higher depositional fluxes of PAHs in March, July, and October. Overall, the factors influencing urban air quality may include construction, fossil fuel combustion, the abrasion of tires and brake linings (directly related to traffic), the corrosion of galvanized protection barriers, and increasing population density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.