Abstract

Ochrobactrum anthropi is resistant to most cephalosporins and penicillins due, at least in part, to the inducible expression of a single beta-lactamase. The beta-lactamase gene has been cloned and sequenced. It encodes an AmpC-type class 1 serine active-site enzyme that hydrolyses mainly cephalosporins and is resistant to inhibition by clavulanic acid. Expression of the ampC gene is inducible via a typical AmpR regulator, which is encoded upstream of ampC. Inducible expression is retained following cloning of O. anthropi ampR-ampC into Escherichia coli, confirming that the signal for AmpR activation in O. anthropi is the same as that used in the Enterobacteriaceae. This is the first reported example of an AmpC beta-lactamase outside of the gamma-subdivision of the bacterial kingdom. Genomic searches of other non-gamma-subdivision bacteria revealed a homologous ampR-ampC cluster in the plant symbiont, Sinorhizobium meliloti.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call