Abstract

A large, crack-free ZnGeP2 single crystal with size of Φ26 mm×70 mm was grown in a vertical three-zone tubular furnace by modified vertical Bridgman method, i.e. real-time temperature compensation technique with small temperature gradient in double-wall quartz ampoule. The as-grown single crystal was characterized by X-ray diffractometer (XRD), energy dispersive spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was found that there is a face of (100) and its second-order XRD peaks were observed. The vertical elements distribution of the main part of the grown crystal has a stoichiometric ratio which is close to the ideal stoichiometry of 1:1:2. The IR transmittance of a sample of 2.5 mm thickness is above 58% in the range from 3500 to 800 cm-1. All these results demonstrate that the quality of the ZnGeP2 single crystal grown by the modified method is good, and could be used in the preparation of devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.