Abstract
The aim of the present work was to examine the modifications of the organic composition of fish endolymph under environmental conditions (day–night cycle, starvation and Cl 2-stress) known to modify otolith growth. Endolymph electrophoretic patterns were compared. An antibody raised against the trout otolith organic matrix allowed examining the variations of organic matrix precursors in the endolymph under the above conditions. Western blot analysis showed bands around 60–80 kDa. A 50% decrease of immunolabelling was observed during the night whereas increases were seen after starvation (factor 3) or stress (factor 2) suggesting that these variations could be related to the organic matrix deposit. A factor retarding in vitro CaCO 3 crystallization (FRC) was shown to co-precipitate with endolymph proteins and its apparent molecular mass (determined by measuring the activity after electro elution of gel electrophoresis) was estimated around 20 kDa. The FRC activity was stable during day–night cycle whereas it decreased by 70% and nearly 100% under starvation and stress respectively. These results suggest that the FRC, although retarding in vitro crystallization, plays a major role in the process of otolith calcification and that the decreases measured after starvation and stress are responsible for the decreases of the otolith growth. The variations of these two parameters (precursors and FRC) could contribute for the changes in the microstructure of the otolith.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.