Abstract
The purpose of this article is twofold. On one hand, we reveal the equivalence of shift of finite type between a one-sided shift X and its associated hom tree-shift TX, as well as the equivalence in the sofic shift. On the other hand, we investigate the interrelationship among the comparable mixing properties on tree-shifts as those on multidimensional shift spaces. They include irreducibility, topologically mixing, block gluing, and strong irreducibility, all of which are defined in the spirit of classical multidimensional shift, complete prefix code (CPC), and uniform CPC. In summary, the mixing properties defined in all three manners coincide for TX. Furthermore, an equivalence between irreducibility on TA and irreducibility on XA are seen, and so is one between topologically mixing on TA and mixing property on XA, where XA is the one-sided shift space induced by the matrix A and TA is the associated tree-shift. These equivalences are consistent with the mixing properties on X or XA when viewed as a degenerate tree-shift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.